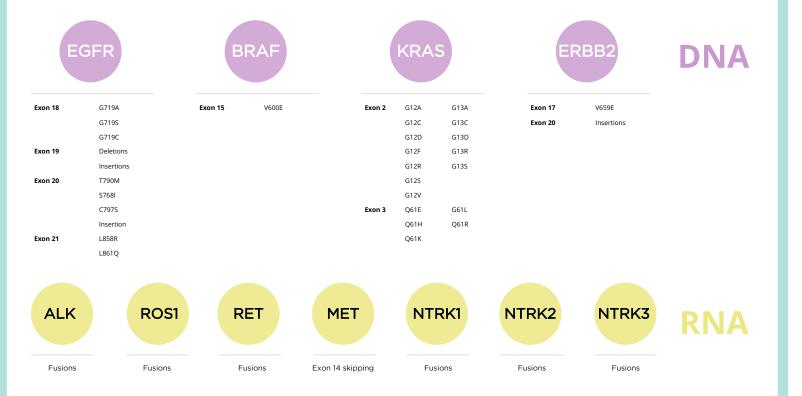
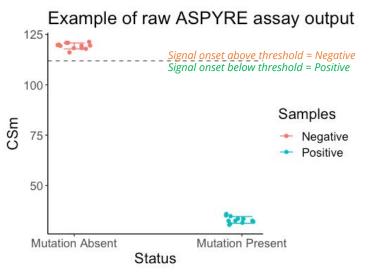
Low-cost, simple and rapid assay for single-molecule detection of gene fusions from RNA with ASPYRE

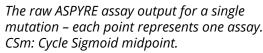
Eleanor Gray, Justyna Mordaka, Efthimia Christoforou, Christina Xyrafaki, Kristine von Bargen, Nicola Potts, Barnaby Balmforth

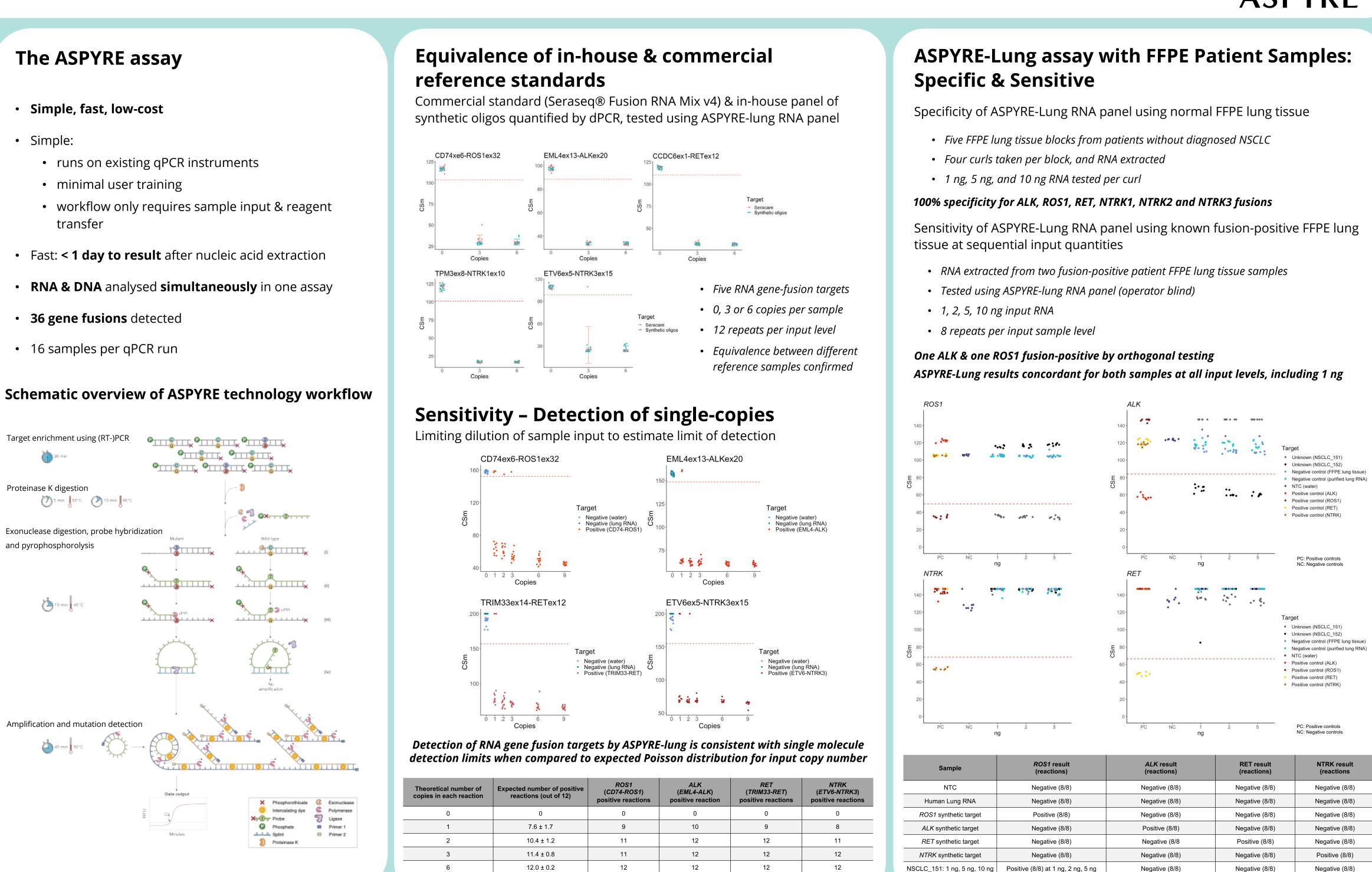

Biofidelity. Ltd, 330 Cambridge Science Park, Cambridge, CB4 0WN, United Kingdom

Why detect gene fusions from RNA? Limitations in testing

- In NSCLC, more than 10 effective therapies are available to target gene fusions, including alectinib (**ALK**), selpercatinib (**RET**), crizotinib (**ROS1**), and larotrectinib (**NTRK**)¹
- RNA is an underused analyte, yet yields insight into gene expression, and is affected by mutations outside of exons
- Most NGS assays target DNA, requiring inference of gene rearrangements from DNA mutations and often resulting in poor coverage of fusions
- NGS is costly, slow, centralized and has large sample requirements
- PCR assays typically analyze only single genes, requiring sequential testing and often resulting in sample exhaustion


ASPYRE assay design – DNA & RNA combined


- ASPYRE-Lung panel detects genomic biomarkers across all NCCNrecommended genes in NSCLC from FFPE or blood, including:
 - deletions, insertions and SNVs in EGFR, BRAF, KRAS, ERBB2 (from DNA)²
 - gene fusions: ALK, RET, ROS1, MET, NTRK1, NTRK2, NTRK3 (from RNA)


ASPYRE assay output

- Genomic variant detected based on fluorescence signal with onset time higher or lower than a control-based threshold
- Binary result: positive (mutation present) or negative (mutation absent) for target variant

- - transfer

Conclusions

- ASPYRE-Lung RNA panel detects 36 most commonly found gene fusions from RNA including ALK, ROS1, RET and NTRK mutations
- Assay workflow takes < 1 day and is run concurrently with DNA sample
- Detection consistent with single molecule detection limits

×	Phosphorothicate	0	Exonuclease
•	Intercalating dye	C	Polymerase
XTOT	Probe	T	Ligase
ø	Phosphate		Primer 1
1.1.1	Splint		Primer 2
3	Proteinase K		

• 100% sensitivity and specificity from clinical samples across all variants and input quantities

12

12.0 ± 0.03

• ASPYRE-Lung provides low-cost, fast, local, actionable biomarker testing from tissue or blood, enabling all patients to benefit from targeted therapies

12

12

12

- References

AACR: 5610

Sample	<i>ROS1</i> result (reactions)	<i>ALK</i> result (reactions)	RET result (reactions)	NTRK result (reactions
NTC	Negative (8/8)	Negative (8/8)	Negative (8/8)	Negative (8/8)
Human Lung RNA	Negative (8/8)	Negative (8/8)	Negative (8/8)	Negative (8/8)
ROS1 synthetic target	Positive (8/8)	Negative (8/8)	Negative (8/8)	Negative (8/8)
ALK synthetic target	Negative (8/8)	Positive (8/8)	Negative (8/8)	Negative (8/8)
RET synthetic target	Negative (8/8)	Negative (8/8	Positive (8/8)	Negative (8/8)
NTRK synthetic target	Negative (8/8)	Negative (8/8)	Negative (8/8)	Positive (8/8)
NSCLC_151: 1 ng, 5 ng, 10 ng	Positive (8/8) at 1 ng, 2 ng, 5 ng	Negative (8/8)	Negative (8/8)	Negative (8/8)
NSCLC_152: 1 ng, 5 ng, 10 ng	Negative (8/8)	Positive (8/8) at 1 ng, 2 ng, 5 ng	Negative (8/8)	Negative (8/8)

1. Tan AC, Tan DSW

Targeted therapies for Lung cancer patients with oncogenic driver molecular alterations. Journal of Clinical Oncology 2022 Feb 20;40(6): 611-625 doi: 10.1200/JCO.21.01626

2. Silva AL, Powalowska PK, Stolarek M, Gray ER, Palmer RN, Herman B, Frayling CA, Balmforth BW. Single-copy detection of somatic variants from solid and liquid biopsy. Scientific Reports 2021 Mar 16; 11(1): 6068 doi: 10.1038/s41598-021-85545-3