
Data output from the laboratory workflow 

→ The final laboratory stage of the Aspyre Lung assay is amplification, monitored 

by real-time fluorescent read-out

→ Each sample has 24 associated wells: 21 assigned to DNA and 3 to RNA 

(including positive and negative controls)

→ Each well has four dyes detected by measurements at different wavelengths

→ An algorithm is required to interpret and convert these fluorescence data into a 

‘detected’, ‘not detected’ or ‘undetermined’ readout for each variant in the panel

Varying inclusion of probe interactions

→ Each DNA variant (SNVs, MNVs, indels) can receive input from between one 

probe (the probe designed to detect that specific variant) to all 80 DNA probes 

used across the assay

→ RNA models tested either just probes from each RNA well or all RNA probes

→ Inclusion of greater numbers of probes in models allows for previously unknown 

probe cross-talk effects and other subtle interactions to be taken into account 

when calling variants

→ It was found (Fig. 2) that inclusion of probes from the same well as the intended 

target, in addition to the target's own probe and known cross-talk, led to a more 

sensitive model. The inclusion of all 80 DNA probes across all DNA wells did 

not provide a boost in sensitivity and was not chosen for the final model

Varying data included in training sets

→ The data used to train models included multiple sources of variation; reagent 

batches, raw materials, qPCR machines, operators, sites

→ It was anticipated that the more training data used in fitting the models would 

lead to better performance

→ This was broadly true, though excluding data generated from pre-lockdown 

versions of the assay (particularly for RNA variants) was better than including all 

available data

→ Shown are the results for RNA targets (Fig. 3)

Development and optimisation of an algorithm for variant calling

A large-scale set of experiments generated a data set to train and test the SVM 

algorithm to perform variant calling. Single variant and multi-variant samples were 

prepared by spiking in the variant-containing oligonucleotide into the wild type 

background of DNA or RNA and used as contrived controls. Contrived 

oligonucleotides made from DNA (SNVs, MNVs, indels) or RNA (fusions, MET exon 

14 skipping) were externally manufactured (Eurofins or IDT), and quantified by digital 

PCR (Qiagen) at the Biofidelity R&D facility. cfDNA derived from healthy donor blood, 

DNA derived from FFPE tonsil tissue and gDNA were used as background for DNA 

reference samples and quantified by Qubit and dPCR. cfRNA extracted from healthy 

donor blood and RNA extracted from FFPE variant-free tonsil tissue was used as 

background for RNA samples and quantified by Qubit. To achieve the required VAF or 

copies, samples were serially diluted to the appropriate concentrations, and 

immediately frozen at -20°C (DNA) or -80°C (RNA).

To create a version of the support vector machine (SVM) model for variant calling for 

plasma, the following parameters were varied: training set, probes used, C, and scale 

compared to a previously established FFPE model3

• Training set – the data used to train models were varied

• Probes used – each variant detected by Aspyre Lung at the nucleic acid level has 

at least one directly associated oligonucleotide probe. The presence of a variant in 

a sample affects its directly associated probe (Figure 1) and can affect other 

probes in more subtle ways. As such, performance benefits may result from using 

signals from multiple probes to make individual variant calls.

• C - regularization parameter, which controls the trade-off between the hyperplane 

margin and misclassifications. Smaller values of C prioritize a wider margin and 

allows for more misclassifications on the training set, while larger values of C 

places more weight on correct classification at the expense of a narrower margin

• Scale – divides normalized parameters of Cycle of Sigmoid Midpoint (CSm) scale 

and S-curve height.

Development of a machine learning model for Aspyre Lung Blood: a new assay for rapid detection of actionable 

variants from plasma in NSCLC patients 
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Aspyre Lung Blood is a pioneering biomarker panel assay detecting 114 
variants of NSCLC from ctDNA and ctRNA in blood plasma

• Parallelized workflow for DNA and RNA, short hands-on time (1 hr 40m), total 

assay time of 14 hrs, easy implementation, no complex bioinformatics or data 

interpretation required

• Uses standard laboratory equipment (PCR machine and a real-time PCR 

machine)

• Cost-effective testing – the assay reports only genomic biomarkers associated 

with NSCLC, with no additional bioinformatics or expert interpretation required

• Assay sensitivity is 0.19% for SNVs & indels, 1 amplifiable copy for gene 
fusions, and 69 copies for MET exon 14 skipping

Aspyre Lung enables accessible, decentralized simplified genomic 

profiling for NSCLC, supporting both tissue and blood plasma samples 

in a single instrument run for 1 to 16 samples per batch. 

The targeted panel covers 114 genomic variants across 11 genes, 

combines high sensitivity, specificity, and fast turnaround times 

through sophisticated machine learning algorithms. 
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• Simultaneous analysis of DNA and RNA

• Comprehensive lung panel covering 

biomarkers across 11 key genes for NSCLC

• Runs on existing real-time PCR instruments

• Straightforward implementation

• Reduced sample requirements

• Fast time to result

Figure 5: Aspyre Lung
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Aspyre Lung is a targeted panel of 114 genomic variants across 11 guideline-

recommended genes with simultaneous DNA1 and RNA2 workflows that makes 

molecular testing more accessible for NSCLC. In this study we developed a machine 

learning algorithm to interpret fluorescence data outputs from Aspyre Lung to adapt 

the assay from tissue to liquid biopsy samples. Data for model training and testing 

were generated from >13,500 DNA and RNA contrived samples, with variants spiked 

in at 0.1% to 82% VAF for DNA and 6 to 5000 copies for RNA. The training and 

testing datasets used 67 reagent batches and 23 operators using 9 qPCR machines 

at two sites. Variant calling machine-learning models were assessed in terms of 

median assay wide LoD95, observed sensitivity, false positive rate per sample, per 

variant LoD95, and per variant observed sensitivity. The model was optimized by 

varying the training data subsets, features used, and model hyperparameters. Models 

were assessed against target specifications as well as resistance to operator error, 

and robustness to variations in global inputs. Across models that passed target 

specifications, the median assay wide LoD95 range was predicted to be 0.23%-

0.79% for DNA SNVs and indels, 1-9 copies for RNA fusions, 41-173 copies for MET

exon 14 skipping, and per sample false positive rate was <0.4%. Verification with 

reference samples established the experimentally determined performance 

characteristics: SNV/indel sensitivity 0.19% VAF, 1 amplifiable copy of gene fusions, 

and 69 copies MET exon 14 skipping events with 100% specificity for all targets. 

Implementation of these models enables the analysis of both tissue and liquid biopsy 

samples with high sensitivity, specificity and accuracy within a single workflow.

Materials & Methods

SVM Machine Learning Model Optimization Results Summary

Aspyre Lung Reagents (Research Use Only)

References

Performance of final models on verification data

→ A set of highly prevalent and/or representative DNA and RNA variants were 

selected to verify the performance of the final DNA and RNA models (Table 1):

→ For each variant, 4 levels of VAF/copy number were selected to be close to the 

associated estimated LoD95. For RNA fusions, 6 copies was the lowest level 

selected to avoid drop-outs associated with random sampling (stochasticity)

→ Assay runs included 6 independent batches of reagents, 10 operators, and 6 

qPCR machines

→ Median LoD95 for DNA variants was found to be 0.19%

→ Median LoD95 for RNA fusions was found to be 1 amplifiable copy.

→ Figures 4 and 5 show verification data for a SNV and gene fusion.
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Aspyre Lung Blood performance

DNA RNA

(SNVs & indels) Fusions MET exon 14 skipping

Sensitivity

(Median panel-wide LoD95)
0.19% VAF 1 amplifiable copy 69 amplifiable copies

Specificity 100% 100% 100%

Figure 3 – The effect of varying the training data 

on assay performance. RNA targets

Training set 1: Original FFPE training set3

Training set 2: Set 1 + additional dataset 

containing plasma-like samples

Training set 3: Set 2 excluding FFPE DNA 

samples

Training set 4: Set 3 excluding some data 

generated before lock of reagent manufacturing 

procedures

Training set 5: Set 3 excluding all data before lock 

of reagent manufacturing procedures

Figure 4 – SVM probability estimate relative to 

the SVM probability threshold (log-odds ratio) as 

VAF input changes for COSM516 (KRAS

p.G12C). Graph shows distribution of log-odds 

for wild-type (i.e. where VAF is 0%). Log-odds of 

greater than 0 is called positive. LoD95 is 

estimated assuming a linear relationship 

between log VAF and log-odds, with Gaussian 

noise. Shown are the 5/50/95 percentiles of the 

linear fit; the point at which these lines cross the 

calling threshold (log-odds of 0) determines the 

estimated LoD5/50/95%.

Figure 2 – The effect of modifying inclusion of 

probe interactions on assay sensitivity. Data 

shown are from the DNA targets of the assay. 

Probe set 1: DNA probes include only their own 

probes and known cross-talk

Probe set 2: DNA probes include their own 

probes, those in the same well (usually 4 

variants), and known cross-talk, 

Probe set 3: DNA probes include all DNA 

probes of the assay (excluding driver-drug 

resistance combinations)

Training Set Probe Set C scale
Median 

LoD95

Observed 

sensitivity

Observed 

FPR/sample

Estimated 

FPR/sample

3 2 0.01 0.6x
0.44% 

+/- 0.16%

89% 

+/- 6%

0.09% 

+/- 0.09%

0.08% 

+/- 0.07%

Table 1 – Chosen parameters for DNA models. Performance estimated using cross-validation 

Training 

Set
Probe Set C scale

Median 

Fusion 

LoD95

MET

LoD95

Observed 

sensitivity

Observed 

FPR/sample

Estimated 

FPR/sample

4 3 0.01 0.6x
0.5C 

+/- 0.6C

69C 

+/- 25C

95.8% 

+/- 0.8%

0.04% 

+/- 0.04%

0.017% 

+/- 0.018%

Table 2 – Chosen parameters for RNA models. Performance estimated using cross-validation 

Figure 5 – SVM probability estimate relative to 

the SVM probability threshold (log-odds ratio) as 

copy number changes for EML4-ALK

(COSF408). Left panel shows distribution of log-

odds for wild-type (i.e. where copy number is 0). 

Log-odds of greater than 0 is called positive. 

LoD95 is estimated assuming a linear 

relationship between log VAF and log-odds as 

per Figure 4 (and that LoD95 <1 copy is 

impossible).

Aspyre target 

nucleic acid
Variant type Gene Exon Protein variant COSM ID

DNA

SNV

KRAS
2 G12C COSM516

3 Q61H COSM554

EGFR 21
L858R COSM6224

L861Q COSM6213

EGFR 20 T790M COSM6240

BRAF 15 V600E COSM476

MNV
ERBB2 17 V659E COSM6503262

KRAS 2 G12V COSM515

Deletion EGFR 19 E746_A750del
COSM6223

COSM6225

Insertion ERBB2 20
Y772_A775dup COSM20959

G778_P780dup COSM12555

EGFR 20
A767_V769dup COSM12376

A763_Y764insFQEA COSM26720

RNA
Fusion

EML4-ALK
E13_A20

NA
COSF408

E20_A20ins18 COSF730

KIF5B-ALK K24_A20 NA COSF1058

KIF5B-RET K15_R12 NA COSF1232

TRIM33-RET T14_R12 NA NA

NCOA4-RET N6-R12 NA COSF1341

CCDC6-RET C1-R12 NA COSF1271

CD74-ROS1 C6_R34 NA COSF1200

SDC4-ROS1 S4_R34 NA COSF1280

CD74-ROS1 C6_R32 NA COSF1202

TPM3-NTRK1 T8_N10 NA COSF1329

QKI-NTRK2 Q6_N16 NA COSF1446

ETV6-NTRK3 E5_N15 NA COSF571

Exon skipping MET 14 L982_D1028del COSM29312

Table 3 – DNA and RNA variants tested to determine the performance of different SVM models

Aspyre Lung assay workflow schematic: parallelized for DNA (L) and RNA (R)

Effect of input probe set on DNA model performance

Effect of training dataset on RNA fusion model performance

KRAS p.G12C (COSM516)

EML4-ALK E13_A20 (COSF408)

Choice of final model

→ Final DNA and RNA models were chosen based on their estimated median LoD95, 

per-variant LoD95 estimates, observed sensitivity, observed and estimated false 

positive rates per sample (FPR/sample)

Figure 1 – Model examples of 

fluorescent curves that may be 

output by the assay, with two 

wild-type curves and a sample 

containing a variant. The variant-

positive and one wild-type show 

typical sigmoidal curves, and the 

second wild-type sample has no 

inflexion point (flat-line). Red 

lines indicate cycle of sigmoid 

midpoints, the inflection point of 

the S

Examples of fluorescence signals output from the Aspyre Lung assay 

Variant-positive

Variant-negative


	Slide 1

