

- C regularization parameter, which controls the trade-off between the hyperplane margin and misclassifications. Smaller values of C prioritize a wider margin and allows for more misclassifications on the training set, while larger values of C places more weight on correct classification at the expense of a narrower margin
- Scale divides normalized parameters of Cycle of Sigmoid Midpoint (CSm) scale and S-curve height.

Development of a machine learning model for Aspyre Lung Blood: a new assay for rapid detection of actionable variants from plasma in NSCLC patients

Rebecca Palmer¹, Sam Abujudeh¹, Magdalena Stolarek-Januszkiewicz¹, Ana-Luisa Silva¹, Justyna Mordaka¹, Kristine von Bargen¹, Alejandra Collazos¹, Simonetta Andreazza¹, Nicola Potts¹, Chau Ha Ho¹, Iyelola Turner¹, Jinsy Jose¹, Dilyara Nugent¹, Prarthna Barot¹, **Christina Xyrafaki²**, Ryan Evans², Katherine Knudsen², Ellie Gillon-Zhang², Julia Brown², Candace King², Cory Kiser², Mary Beth Rossi², Eleanor Gray¹, Robert Osborne¹, Barnaby Balmforth¹

Training set 4: Set 3 excluding *some* data generated before lock of reagent manufacturing procedures

Training set 5: Set 3 excluding *all* data before lock of reagent manufacturing procedures

								1
0.04	•						•	2
0.94 -							•	3
		•	•				•	4
0.92 -								5
0.00								
0.90 -		· •	*					
0.00					•			
0.88 -				•				
0.96								
0.00 -								
0 01								
0.04 -								
0 82						•		-
0.02 7	L							
	0	2	4	6	8	10	12	14
			Median	RNA Fusi	on LoD95	(Copies)		

. Biofidelity Ltd., Cambridge, UK 2. Biofidelity Inc., Morrisville, North Carolina, USA

Results Choice of final model → Final DNA and RNA models were chosen based on their estimated median LoD95. per-variant LoD95 estimates, observed sensitivity, observed and estimated false positive rates per sample (FPR/sample) Training Set Probe Set FPR/sample FPR/sample LoD95 sensitivitv 0.08% 0.01 +/- 0.09% +/- 0.07% +/- 0.16% +/- 6% **Table 1** – Chosen parameters for DNA models. Performance estimated using cross-validation Observed Estimated MET Observed Training Set Probe Set scale Fusion LoD95 sensitivity FPR/sample FPR/sample 0.017% 0.6x +/- 0.6C +/- 25C +/- 0.04% +/- 0.018% +/- 0.8% **Table 2** – Chosen parameters for RNA models. Performance estimated using cross-validation Performance of final models on verification data

 \rightarrow A set of highly prevalent and/or representative DNA and RNA variants were selected to verify the performance of the final DNA and RNA models (Table 1):

Aspyre target nucleic acid	Variant type	Gene	Exon	Protein variant	COSM ID
		KDA S	2	G12C	COSM516
		KRAS	3	Q61H	COSM554
	SNV	EGFR	21	L858R	COSM6224
				L861Q	COSM6213
		EGFR	20	T790M	COSM6240
		BRAF	15	V600E	COSM476
	MNV	ERBB2	17	V659E	COSM6503262
DNA		KRAS	2	G12V	COSM515
	Deletion	EGFR	19		COSM6223
	Deletion			E746_A750del	COSM6225
	Insertion	ERBB2	20 -	Y772_A775dup	COSM20959
				G778_P780dup	COSM12555
		EGFR	20	A767_V769dup	COSM12376
				A763_Y764insFQEA	COSM26720
		EML4-ALK	E13_A20		COSF408
			E20_A20ins18	NA NA	COSF730
RNA		KIF5B-ALK	K24_A20	NA	COSF1058
		KIF5B-RET	K15_R12	NA	COSF1232
		TRIM33-RET	T14_R12	NA	NA
	Fusion	NCOA4-RET	N6-R12	NA	COSF1341
		CCDC6-RET	C1-R12	NA	COSF1271
		CD74-ROS1	C6_R34	NA	COSF1200
		SDC4-ROS1	S4_R34	NA	COSF1280
		CD74-ROS1	C6_R32	NA	COSF1202
		TPM3-NTRK1	T8_N10	NA	COSF1329
		QKI-NTRK2	Q6_N16	NA	COSF1446
		ETV6-NTRK3	E5_N15	NA	COSF571
	Exon skipping	MET	1 /	1.082 D1028dol	COSM20312

Table 3 – DNA and RNA variants tested to determine the performance of different SVM models

- \rightarrow For each variant, 4 levels of VAF/copy number were selected to be close to the associated estimated LoD95. For RNA fusions, 6 copies was the lowest level selected to avoid drop-outs associated with random sampling (stochasticity)
- \rightarrow Assay runs included 6 independent batches of reagents, 10 operators, and 6 qPCR machines
- \rightarrow Median LoD95 for DNA variants was found to be 0.19%
- \rightarrow Median LoD95 for RNA fusions was found to be 1 amplifiable copy.
- \rightarrow Figures 4 and 5 show verification data for a SNV and gene fusion.

Figure 4 – SVM probability estimate relative to the SVM probability threshold (log-odds ratio) as VAF input changes for COSM516 (KRAS p.G12C). Graph shows distribution of log-odds for wild-type (i.e. where VAF is 0%). Log-odds of greater than 0 is called positive. LoD95 is estimated assuming a linear relationship between log VAF and log-odds, with Gaussian noise. Shown are the 5/50/95 percentiles of the linear fit; the point at which these lines cross the calling threshold (log-odds of 0) determines the estimated LoD5/50/95%. **Figure 5** – SVM probability estimate relative to the SVM probability threshold (log-odds ratio) as

copy number changes for *EML4-ALK* (COSF408). Left panel shows distribution of logodds for wild-type (i.e. where copy number is 0). Log-odds of greater than 0 is called positive. LoD95 is estimated assuming a linear

relationship between log VAF and log-odds as per Figure 4 (and that LoD95 <1 copy is impossible).

DNA

RNA

Time

Biofidelity

Summary

Aspyre Lung Blood is a pioneering biomarker panel assay detecting 114 variants of NSCLC from ctDNA and ctRNA in blood plasma

Parallelized workflow for DNA and RNA, short hands-on time (1 hr 40m), total assay time of 14 hrs, easy implementation, no complex bioinformatics or data interpretation required

	Target Amplification	Enzymatic Cleanup Reaction	Aspyre Reaction	Detection Reaction	Data Analysis
ment rements	Thermal cycler	Thermal cycler	Thermal cycler	Real-time PCR instrument	Desktop computer
s-on	30 mins	10 mins	35 mins	15 min	5 mins
ation	1 hour 25 mins	15 mins	35 mins	3 hours 30 mins	-

- Uses standard laboratory equipment (PCR machine and a real-time PCR machine)
- Cost-effective testing the assay reports only genomic biomarkers associated with NSCLC, with no additional bioinformatics or expert interpretation required
- Assay sensitivity is 0.19% for SNVs & indels, 1 amplifiable copy for gene fusions, and 69 copies for *MET* exon 14 skipping

Aspyre Lung Blood performance					
	DNA	DNA RNA			
	(SNVs & indels)	Fusions	<i>MET</i> exon 14 skipping		
Sensitivity /ledian panel-wide LoD95)	0.19% VAF	1 amplifiable copy	69 amplifiable copies		
Specificity	100%	100%	100%		
Sensitivity /ledian panel-wide LoD95) Specificity	(SNVS & Indels) 0.19% VAF 100%	1 amplifiable copy	69 amplifiable copies		

- Aspyre Lung enables accessible, decentralized simplified genomic profiling for NSCLC, supporting both tissue and blood plasma samples in a single instrument run for 1 to 16 samples per batch.
- The targeted panel covers 114 genomic variants across 11 genes, combines high sensitivity, specificity, and fast turnaround times through sophisticated machine learning algorithms.

Aspyre Lung Reagents (Research Use Only)

- Simultaneous analysis of DNA and RNA
- Comprehensive lung panel covering
- biomarkers across 11 key genes for NSCLC
- Runs on existing real-time PCR instruments
- Straightforward implementation
- Reduced sample requirements
- Fast time to result

Aspyre.	Aspyre
Reag	Lung
<i>jents</i>	Reagents
Far Research Use Only	For Research Use Only

Figure 5: Aspyre Lung

References

- Silva et al. 2021. Single-copy detection of somatic variants from solid and liquid biopsy. *Sci Rep.* 11(1):6068.
- 2. Gray et al. 2022. Ultra-sensitive molecular detection of gene fusions from RNA using ASPYRE. BMC Med Genomics. 15(1):215.
- Evans et al. 2024 Validation of a simple, fast, robust method for multi-variant genomic analysis of actionable NSCLC variants in FFPE tissue. Frontiers in Oncology. 14:1420162

*All authors are employees of Biofidelity Inc and may have a financial interest including salary, equity, options, and intellectual property.